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The widespread occurrence of tetrahydrofuran and tetrahy-
dropyran rings in many classes of natural products makes it 
important to develop new methods for their syntheses.12 Our 
recent discovery of the ability of phosphines to redirect the 
addition of carbon nucleophiles from the normal ̂ -position (i.e., 
Michael addition) to the y-position of 2-alkynoates led to 
consideration of eq 1 (path a) as a facile method for the synthesis 
of these heterocycles.3 However, the fact that such substrates 
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can undergo simple migration of the unsaturation to form 
dienoates (eq 1, path b), a pathway that normally dominates, 
undermines such a proposal. Furthermore, the fact that alcohols 
are much poorer Michael donors than are carbon nucleophiles 
questions the viability of such a strategy. Nevertheless, we wish 
to report not only that this strategy succeeds but also that 
alcohols are better donors than carbon nucleophiles in our 
isomerization—addition in contrast to the Michael reaction.4 

The feasibility of alcohol addition was tested in the reaction 
of methyl 2-butynoate (la) with benzyl alcohol (eq 2). Heating 
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a 1 M solution of a 1:1 mixture of the two reactants in the 
presence of 5 mol % triphenylphosphine (TPP) and 20% acetic 
acid at 90 0C gave the desired adduct 2a in 81% isolated yield. 
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For examining the reactivity of a secondary alcohol, we chose 
cholesterol. Performing the reaction at 0.5 M gave a 48% 
isolated yield of the desired product 2b in the same time period 
(12 h) due to a lower conversion of the starting material, which 
indicates a slower reaction. 

Attempts to effect isomerization—addition of dimethyl malo-
nate to methyl 4-(benzyloxy)-2-butynoate led to none of the 
expected adduct. In complete contrast to this result, benzyl 
alcohol undergoes smooth addition under the conditions of eq 
2. Thus, alcohols are superior to carbon nucleophiles in this 
isomerization—addition. This result is critical to the cyclization 
studies since isomerization—addition will be competing with 
simple isomerization to dienoates—the latter process completely 
dominating with carbon nucleophiles under our standard TPP 
conditions. 

The higher reactivity of primary vs secondary alcohols led 
to an initial study with methyl 7-hydroxy-2-heptynoate (3) (eq 
3). Our "standard" conditions produced a nearly 1:1 mixture 
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of the simple isomerization product 45 and the isomerization— 
addition product 5.6 By manipulating the reaction parameters, 
either product could be made to dominate. For example, 
switching from toluene to the more polar DMSO strongly 
favored formation of dienoate 4. On the other hand, switching 
from a monodentate phosphine to a bidentate one, dppp, strongly 
favored isomerization—addition. For our cyclization, we have 
adopted 5 mol % dppp and 20 mol % acetic acid in toluene at 
85—90 0C as our standard conditions. 

Secondary alcohols also cyclize to form both five- (eq 4) and 
six- (eq 5) membered rings. While the tetrahydrofuran 65 was 
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a diastereomeric mixture, the tetrahydropyran 75 was virtually 
a single stereoisomer assigned cis on the basis of the axial-
axial vicinal coupling constants (/ = 11.2 and 11.5 Hz) of the 
hydrogens adjacent to oxygen. Even a tertiary alcohol led to 
successful isomerization—addition to form a spiro tetrahydro­
furan 85 (eq 6). 
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Formation of fused bicyclic systems proved most interesting. 
Using a cyclopentyl scaffold, the trans and cis substrates 9 and 
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Scheme 1. Mechanistic Rationale for Phosphine-Catalyzed Internal Redox 
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10 gave quite distinct results. Whereas the trans isomer 9 gave 
only dienoate l l 5 (eq 7), the cis isomer 10 gave the isomer­
ization—addition product 125 as a 55:45 diastereomeric mixture 
(eq 8). On the other hand, using a cyclohexyl scaffold, the trans 
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and cis hydroxyalkynoates 13 and 14 successfully cyclize to 
the tetrahydrofurans 155 and 16,5 respectively, as diastereomeric 
mixtures (eqs 9 and 10). In the former case, a small amount of 
the dienoate product was detected. 
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Other oxygen heterocycles may also be constructed by this 
method. Cyclization of the aminol 17 generates the 1,3-oxazine 
185 diastereomerically pure (eq 11). The presence of axial-
axial coupling constants of 13.2 and 11.8 Hz for Ha and Hb, 
respectively, suggests the cis isomer as depicted. 
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A typical experimental procedure follows (eq 5). Acetic acid 
(6 mg, 0.1 mmol) was added to a solution of methyl 8-hydroxy-
8-phenyl-2-octynoate (123 mg, 0.5 mmol) and dppp (6 mg, 
0.0015 mmol) in 1 mL of toluene. After being heated 15 h at 

90 0C, the cooled reaction mixture was concentrated in vacuo 
and flash chromatographed (12:1 hexane:ethyl acetate) to give 
103 mg (84% yield) of 7. Characterization data appear in the 
supplementary material. 

A mechanism to account for this remarkable cyclization is 
presented in the Scheme 1. The advantage of a bidentate 
phosphine may stem from the ability of the second phosphine 
to function as a general base catalyst. The delicate balance 
between isomerization to dienes and isomerization—addition is 
highlighted by the dramatic effect of solvent (eq 3) and geometry 
(eq 7). Nevertheless, excellent yields of tetrahydrofurans, 
tetrahydropyrans, and a 1,3-oxazine have been obtained in many 
cases. 

The simplicity and mildness of this method for the construc­
tion of oxygen heterocycles should impart selectivity. Thus, 
many functional groups, including conjugated and unconjugated 
olefins, unconjugated acetylenes, alcohols, acids, esters, ketones, 
etc., should be compatible. The fact that the hydroxyl oxygen 
adds in preference to a carboxylic acid oxygen, a carboxylic 
acid being required as a cocatalyst, presumably reflects the 
importance of electron density rather than polarizability for the 
donor group. The ease of construction of acetylenic substrates 
due to the ability of this linkage to facilitate both nucleophilic 
and electrophilic reactions adds power to the method. The 
presence of an enoate in the product offers great opportunity 
for further structural elaboration. The ability to trigger folding 
of an acyclic hydroxyalkynoate to cyclic ethers constitutes a 
cycloisomerization, a highly atom economical type of reaction. 
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